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Abstract: This research article determined the structure of the coefficients associated with the optimal computa 

tional algorithm for control index matrices of single–delay autonomous linear neutral differential equations]. The 

development of these coefficients exploited the general computational structure of these matrices for positive time 

periods, skillful assignments of the 0-1 controlling parameters, change of variables techniques, the theory of linear 

difference equations, and the deployment of deft reasoning to generate easily solvable recursive equations for the 

coefficients. 
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1.   INTRODUCTION 

Control index matrices are integral components of variation of constants formulas in the solutions of terminal function 

problems in linear and perturbed linear functional differential equations.  But quite curiously, no other author has made 

any serious attempt to investigate the existence or otherwise of their general expressions or to obtain an optimal 

computational algorithms for various classes of these equations. Effort has  usually focused on the single – delay model 

and  the approach has been  to start from the interval 
1 1[ , ]t h t , compute the control index matrices and solutions for 

given problem instances and then use the method of steps to extend these to the intervals 1 1[ ( 1) , ],t j h t jh   for 

nonnegative integral j , not exceeding 2, for the most part; for real 
1 1: ( 1) 0.t t j h     Such approach is rather 

restrictive and doomed to failure in terms of structure for arbitrary j . In other words such approach fails to address the 

issue of the structure of control index matrices and solutions of terminal function problems quite vital for real-world 

applications.  With a view to addressing such short-comings, [1] blazed the trail by considering the class of double – delay 

scalar differential equations: 

( ) ( ) ( ) ( 2 ), , (1)x t ax t bx t h cx t h t     R  

where , and a b c are arbitrary real constants.  

2.   METHODS 

By deploying ingenious combinations of summation notations, multinomial distribution, greatest integer functions, 

change of variables techniques, multiple integrals, as well as the method of steps, the paper derived the following optimal 

expressions for the scalar control index matrices: 
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1 1 1 denotes the greatest integer where 

function, and ( , ) denotes a generic control index matrix of the above class of equations for

See also [1] for gene

[ ], {0,1, } :  1 , 1 0; .

 .

j

X t

K t t j tj h jh j h

t

          

R

ral information on indices of control systems.
 

[2] obtained a computational algorithm for control index matrices of single-delay autonomous linear neutral differential 

equations based on transitions of these matrices on contiguous intervals, each of  length equal to the delay h. 

This article makes further positive contribution to knowledge by using the structure of above algorithm to determine the 

nature and flavor of the coefficients associated with the control index matrices, thereby considerably reducing the 

computational effort in [2], as well as eliminating aggregation errors from the resulting components of the control index 

matrices.  

3.   RESULTS AND DISCUSSIONS 
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0 1 2times and; 1,   . a a b a c  

1 1 1 1Let for  all nonnegative integral for fixed ( 1) , ,   : ( 1) 0,  0.jK t j h t jh j t j h t           

1 1For let, ( , ) ( , )j jK X t X t   
 
be a control index matrix associated with the class of differential equations  
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Note that 1( , )X t  is a generic control index matrix for any . R   
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The coefficients 
1 0 1
,   ,a a a


and the associated functions are all from the real domain. The stage is set for the statement 

and proof of the first theorem, preliminary to the statement and proof of the major result of this paper. 

1 1 1 [1]

matri

By careful perusal and exploitation of the results obtained for on the interval successfully 

devised the following optimal computational algorithm for the control index

 ( , )  [ , ], 6 5X t t th h  
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11 1) ), 1


  A computational Algorithm for transiting from ( ,  to ( ,3.1  
j j

X t X t j

 

   

 

 
  

  

 
 

2

1 2

1 2

2

1 2

1 0 1

1 1

1 2

0 1

0 1

1 2 1 1 0 1

1 1 1 1 1

1

1

11 0 1

1 1

2

[ 1]

(

Let Suppose that Then

[ 1]
!

,  let , 0,1 .  0.

( , ) ( , ) ( , ) (7a)

( [ 2] )
1

k
j

k

j

k

j

i

a t k h

a t

a a a
a t k h

k

K a a a a

X t X t X t e

a a a
a t i h e



 

 



 






  

  












 





 



 



  




  



   

  


   





    

 
   

  
2

2

1 2

1

1 2

1 0 1

1

2 2

0 1

1

1 1

2

1

1 1 2

 

[ 2] )

( [ 1] )
sgn max 0, 2( [ 1] )

1 ( 1) sgn( )

for some real positive constants secured fr

sgn max 0, 1 (7b)

(7c)

k

k

j

i

j j i
i

i k

i k

i k

i h

a t i k h
j

a a a
t i k h

k

j

c a e

c





 



 






 







  

 




   

 

   



   

  





 

 

1om with the process initiated at( , ),  1.jX t j 

  

3.2 Remarks on the optimal computational algorithm: 
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3.3 Main Result: Theorem on the determination of the structure of the control index matrix coefficients from 

Algorithm 3.1 
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Proof 

1 2The assignments in expression (7a) yield the expression component 0, 1,      
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3.4 Corollary on the coefficients: 
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3.5  Illustrative Examples:
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4.   CONCLUSION 

This article obtained the structure of the coefficients of the control index matrices of single-delay neutral differential 

equations in [1] through exact determination of some of those and the derivation of easily solvable recursive difference 

equation for the remaining coefficients, proving conclusively that there is no general expression for such coefficients. 

This contrasts quite sharply with the coefficients of control index matrices of single-delay and the class of double-delay 

differential equations whose expressions are clearly established, as in expressions (2) and (3). 

REFERENCES 

[1] C. Ukwu and E.J.D. Garba (2014d).  “Formulations and proofs of optimal expressions for control index matrices for 

a class of double-delay differential equations”.  International Journal of Mathematics and Statistics Invention 

(IJMSI). Vol. 2, Iss. 2, March, 2014. 

[2] C. Ukwu (2014 y). On computational algorithm of indices of control systems matrices of single–delay linear neutral 

scalar differential equations.  Journal of Mathematical Science. Vol. 25, No. 3, September 2014. 


