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Abstract: This research article determined the structure of the coefficients associated with the optimal computa
tional algorithm for control index matrices of single—delay autonomous linear neutral differential equations]. The
development of these coefficients exploited the general computational structure of these matrices for positive time
periods, skillful assignments of the 0-1 controlling parameters, change of variables techniques, the theory of linear
difference equations, and the deployment of deft reasoning to generate easily solvable recursive equations for the
coefficients.
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1. INTRODUCTION

Control index matrices are integral components of variation of constants formulas in the solutions of terminal function
problems in linear and perturbed linear functional differential equations. But quite curiously, no other author has made
any serious attempt to investigate the existence or otherwise of their general expressions or to obtain an optimal
computational algorithms for various classes of these equations. Effort has usually focused on the single — delay model

and the approach has been to start from the interval [t1 —h,tl], compute the control index matrices and solutions for
given problem instances and then use the method of steps to extend these to the intervals [t, — (j+1)h, t, — jh], for

nonnegative integral j, not exceeding 2, for the most part; for real t, :t, —(j+1)h>0. Such approach is rather

restrictive and doomed to failure in terms of structure for arbitrary j. In other words such approach fails to address the

issue of the structure of control index matrices and solutions of terminal function problems quite vital for real-world
applications. With a view to addressing such short-comings, [1] blazed the trail by considering the class of double — delay
scalar differential equations:

%(t) = ax(t) + bx(t —h) + cx(t — 2h), t e R, @)

where a, b and c are arbitrary real constants.

2. METHODS

By deploying ingenious combinations of summation notations, multinomial distribution, greatest integer functions,
change of variables techniques, multiple integrals, as well as the method of steps, the paper derived the following optimal
expressions for the scalar control index matrices:
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™ e Ky; (2)

i (t,~[z+ih]) _
X(z,t) = pa(ti=") +Zb| Mea(tl—[rﬂh])

) i!

i - i i+k
X Hzﬂ Ji‘fbick (tl _[T+?|:l2k)h]) ea(tl—[z'Jr(iJer)h])’ rekK,, j>1 (3)

k=1 i=0

where K, =t, —( J +l) h,t,—jh], je{0,1,--}:t; —( | +1) h>0; [[]] denotes the greatest integer
function, and X (, t,) denotes a generic control index matrix of the above class of equations for t € R.

See also [1] for general information on indices of control systems.

[2] obtained a computational algorithm for control index matrices of single-delay autonomous linear neutral differential

equations based on transitions of these matrices on contiguous intervals, each of length equal to the delay h.

This article makes further positive contribution to knowledge by using the structure of above algorithm to determine the
nature and flavor of the coefficients associated with the control index matrices, thereby considerably reducing the
computational effort in [2], as well as eliminating aggregation errors from the resulting components of the control index
matrices.

3. RESULTS AND DISCUSSIONS

A careful reflection on (2) and (3) reveals that for 7 € KJ- ] 0,t, # ph, for any positive integer p,

J _
HZH j-2 (tl —[r+(i+ 2k)h])'+k alt,[e+(+2K)n])

X(r,t.)= bick : e sgn(max{0, j+1
();)Z0 T gn(max{0, j +13)
[ %ﬂ 12 (t1 —[c+(i+ 2k)h])i+k a(ty-[r+(i+2k)h])
- Z a, 2, _ | e sgn(max{0, j +1}), (4)
k=0 120 MorVisky e Py 5y 2 i (vt
where P, denotes the permutations of the objects 1 and 2 in which 1 occurs i times, 2

1(i).2 (k)
K times; a,=1,a =band a,=c.

LetK; = [tl —(J+Dh,t, - jh],for all nonnegative integral j:t, —(j+2)h >0, forfixedt, > 0.

For r e K, let X(z,t,) = X;(z,t,) be acontrol index matrix associated with the class of differential equations
X(t) =a x(t—h)+a,x(t) +ax(t—h), (5)

on the interval K i where

1, 7=t
X(z,1,) ={ (6)

0, 7>t

Note that X (Z’,tl) is a generic control index matrix for any 7 € R.
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The coefficients a ;,a,, a,and the associated functions are all from the real domain. The stage is set for the statement
and proof of the first theorem, preliminary to the statement and proof of the major result of this paper.

By careful perusal and exploitation of the results obtained for X (,t,) on the interval [t, — 6h, t,— 5h], [1] successfully

devised the following optimal computational algorithm for the control index matrices, with detailed interpretation, without

recourse to the class of of differential equations (5) and initial matrix specification (6), using X, (z,t,) as a starting point.

3.1 A computational Algorithm for transiting from X, (z,t,) to X, ,(t,t}), j 21

Let 7K, let 4,4, €{0,1}. Suppose that (:171(&71610 + al) #0. Then

i a,a,+ Kete +2, 1—(r+[k+1]h
X(T:tl)z Xj+l(Tat1)= X i; 1;3 10(—/?1‘;(':1—(T+[k+1]h))k ! (:,‘aﬂ(t ( )) (78.)
It ivs, (2,8, + e . + —(z+[i+ :
+ 424::1 ;a—lﬂl%(tl—(r+[l+2]h))l 2 gPolti{rH1I+ZIn) sgn(max {0, j-1}) (7b)
e al)MZ . ki, A (ty~{z+[i+k+1]h)) .
c.a," t, k+1h)) e 0,j-2}) (7c
;1%‘ IZKZ; "W 1+/1 +(k NS0 )( —(z+[i+k+1h)) e sgn(max {0, j-2}) (7c)

for some real positive constants ¢;, secured from X (z,t,), with the process initiated at j =1.

3.2 Remarks on the optimal computational algorithm:

Observe that for 7 € K, X J-+1(‘L', t,) can be expressed in the equivalent form

Xialr, 1) =X (7, )
)k+lz

j-1 k-i .
+ 2 Zc, i % (t, — (7 +[i +k+ 1)) eI sgn (max {0, -1y
2

Aq+7,=11=0 k=1
for some real positive constants C;, secured from X (7, t,), with the process initiated at j =1.
1 . . .
Moreover Cy, :m,ke {1,2,---, ] +1}; c,=Llie {1,2,---, J} and the transformation from Xj(r, t,)
to X, (1, t,) requires only the computations of ¢;, for i € {12, j+1-2} ke {2,3,+, j+1-i}, j 23,
such that i + K = j +1. Therefore one need only determine = j —1 new C;, values, namely
Clj’CZ j—l’C3 j—zf"lcj—lz-

3.3 Main Result: Theorem on the determination of the structure of the control index matrix coefficients from
Algorithm 3.1

Let je{1,2,---},setc;, =1and c,, :%, ke{1,2,3,-, j+1}. Thenfor re K, j€{2,3,--},

€{1,2,---,j-2},ke{2,3,---, j—i}, the coefficients ¢, in algorithm 3.1 are given by:
1

(k-1)!

(@ cy = ©) G2 =(1+1) © e =3 +es ®)

Proof

The assignments 4, =0, A, =1,in expression (7a) yield the expression component
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3t ) o k i Kh K _ay(t,[r+kh])
e +k§m(a_lao+a1) (t,~[r+kh]) e
2(t-7) & k' ag(t,-[z+kh])
=e"" 13 e (a8, +a, )(t, ~[r+kh]) e*" = Cow =17
k=1 H
the assignments 4, =1, 4, =0, ] =1, in the second component of expression (7a) and 4, =1, 4, =0,in

expression (7b) yield the summed component

& (ty—(+{i+1]h)
Z a'y(a,a,+a,)(t, — (r+[i +1]h)e* = C;; =1.Therefore C,; and C;, are well-defined.
i=1

C,, isobtainable by setting j =2,4, =1, 4, =0, in (7a); i =14, =0,4,=1 in (7b). Therefore

1 1 . .

Ci, :§+E =1. For k>3, ¢, corresponds to setting 4, =1, 4, =01in (7b); i=1,4, =0,4,=1
. . : 1 1

and letting K — k —1, in summation (7c). Thus C,, = EClj_l +ﬁ'

Proof of (a) in theorem 3.3:

The proof is by mathematical induction on K. Plugging in i =1,k = 2 on the left side of (6)
1 1 1 1 1

:>—C11+—:—+—:1:

2 2! 2 2! (2—1)!

is valid for K € {3, e p} , for some integer p < ] — 2. Then from (6) and the induction hypothesis,

= C,, = the assertion is valid for Kk = 2. Assume that the assertion

6 =Lt o Lt L — - (1+£]
T prl ™ T (pel)t (p+l)(p-1)t (p+1)! (p+l)(p-1 p

~ 1 (p+1]_ 1

S (p+y)(p-2 p ) ([p+2]-2)Y

Therefore the assertion (a) is valid for K = p +1 and hence valid for all kK € {2,3, T —1}.

(b) Forie{2,3,+, j-2}, c;, corresponds to 4, =0, 4, =1, in summation (7b); 4, =1, 4, =0,

.. 1 1 3 1
k=2, and i — i —1,in summation (7c) = C,, = E+C1 , =>C, = §+1= —= E(2+l) =
assertion (b) of theorem 3.3 is valid for I = 2. Assume that the assertion is valid | € {3, e p}
. 1
for some p € {3, ] —1}. Then by (6) and the induction hypothesis, C;, =C, , , +E

= %([I —1+1]) +% = %(I +l) = assertion (b) of theorem 3.3 is valid for p = J; so (b)

of theorem 3.3is valid.
(c) Forie{2,3,--,j—2} andk € {3,---, i —1}, summations (7a) and (7b) are not feasible.

Therefore only (7c) is applicable in the determination of C; ;, in which case C;, corresponds to letting

i
A, =11, =0, 1 — i—1insummation (7c), returning to the parent (7c), then letting

A,=0,4, =1and k — k —1,in summation (7c) and adding up the results from both contingencies

to obtain C,, =%Cik1+ci1k; ie{2,3,---,j—2}, ke{3,~-~,j—i}. Moreover
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. I-1]+1
C, —ECi1 = 1(I +1)—1 = L = ([—]) =C_, , = the assertion is also valid for kK = 2,
2 2 2 2 2
completing the proof.

3.4 Corollary on the coefficients:

(a)ThereareexactIy lej -3)+(j- 4)+~-~+1:%(j—3)(j—2) constants to be

determined from the recursive equations.

(b) In the transition from X, (7,t,) to X, ,(,1,), there are exactly

%[([J +1]-3)([j+1-2)-(i-3)(i— 2)1 = j —2 new coefficients to be determined;

the other — (J 3)( j- 2) are picked up from X, (7, t,).

The implication of (b) in corollary 3.4 is far-reaching: the number of coefficients to be

obtained and quite easily too, is pruned to a mere size of K — 2, precisely those ;s for which

1 1

i+j=k+1namely ¢, ,,C;\_,,**,C._, ,;needless to say that C =———,C,=1landC, =——.
2k-11 "3 k-2 k-12 0 k+1 (k+1)' k1 1k (k—l)l

3.5 Illustrative Examples:

7
For T€e U Kj , the expressions for X (, tl) were determined in [1]. Now the consistency of theorem 3.3 with algorithm 3.1 will
j=0

7
be demonstrated for T € U K. Furthermore, theorem 3.3 will be used to extend the expressions for X (t,t,) to the T-interval K.
j=6

To secure X (1,t,), for T€ K, only the additional coefficients C,, : 1 +K = 6 need to be determined, namely

Cos+Ci51Cs11CysyCsqsCyq,Cyy and Cyg. The remaining coefficients can be picked up from X (t,t,), for T € K.

1 ) 1 5 1
NOWCO6=&,C15=a,C51=1, C24:4C () ' 12'C42:EC41+032
1 5 1 1 5
:E+2:§,C33:§C32 +C23:§(2)+1:§.Hence

X (e ) ="+ ZG: (2.2 +a1) (tl—[rJrkh])i g0l L)

k=1

6-1 .
+ ai_1 (a_lao + al) (t1 — (Z' +[i +1]h))eao(t1—(r+[l+1]h)) +a, (a—laO " al) (t e+ 3h])2 ag (t;—[r+3h])

i=1

t, —[r +4h])
s (ty [724‘ )] +gafl(a—la0 +a1)2 (t, [+ 4h])’ p2o(ti-{r+ah])
« (t,~[z+5h])°
) 3!
+2a° (a8, +8, )’ (t,—[r+ 5h])2

+|a, (a8, +a)

a,(a,a+a +a’, (a3, +a) (t,—[r+ 5h]) oty +5h)
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a,(a,a,+a,) w
+ H

+ga“1 (a3, +a,) (t, —[r+6h])2 +ga31 (a3, +2,) (t, —[r+6h])3

5 , 4 4
Jrﬁafl(afla0 +a,) (tl —[r+6h]) N

6

For 7 € K7 , the additional coefficients are Cy;,C;4,Cg11Cy5,C5,,Cq4 Cys -

1 1 1 1(5 1
Cor = =31Cs = s G =1, Czszgcz4+015:g |t

7-1 .
+3 (a8, +a)t —(c+[i+0n)e* TV g (@ a +a ) (t, —[r+3n])2e T

t, —[r +4h])°
3 (t, —[7 +4h]) +§a21(a—la0 +a1)2 (t, _[T+4h])2:|eao(t1—[r+4h])

+ {a_l(a_laOJrai) 5 =

4
t, —[z +5h]
) (T) + afl (a,lao + 31)3 (tl —[z+ 5h])3 eao(tl_[ﬂsh])

_+2afl (a,8,+8,) (t1 ~[r+ 5h])2

a'—1 (a—laO + al)

5
t, —[r+5h] 5
N ":1—1(3-—1510"ra1)5(1 41 _) +Eafl(a_1ao+ai)4(t1—[r+6h])4

+ga41(a1ao +a,) (t,~[r+6h]) +ga3l(a1ao +a,)’(t,~[z+6h])’

eao(tl—[rJrGh])

o (t, [z +7h])

1
3 +§afl(a71ao+a1)5 (tl—[r+7h])5

afl(aflao + ai)
+| +3a°% (a3, +a,) (t,—[r+ 7h])2 +§a3l (a3, +a) (t,~[r+ 7h])4 gt ek

S 4
+3al (a3, +a) (t,—[r+ 7h])3

The consistency of theorem 3.3 with algorithm 3.1 is verified for 7 € K.

Finally, for 7 € K, the additional coefficients are C,g,C;;,C7;,C,:Cs 5, Ca51Cs3,Cyy -
11 1 1(1}1 7 1 7

1
_EC25+C16=E 8 a:%’C62:EC<51+C52=E(1)+3:21

T —1(§j+1—l . =tc, +c —£(3)+§—Zc ET, —E(§j+§—3—5
35 5 34 25 8 24' 53 3 52 43 3 2 2’ 44 4 43 34 4 2 6 24
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8

>

k=1

(343 +2)

(z,t) = po(t?) +( » (tl le+ kh])i eao(tl[r+kh])J

r+[i+1]h))

8-1
> al(aja,+a,)(t,—(r+[i +1]h))ea°(t1_( +a,(a,+a )2 (t, — [ +3nh])?e T3
i=1

5 (t, —[z +4h])°
2

3

*3 % (a8, +8,)" (t, [z +4h])? } o (ti-{r+ah])

{a_l(a_lao +a,)

(t,~[r +5h1)’
—
_+2afl (a3, + 31)2 (tl —[r+ 5h])2

a, (a—lao + 31)4 +a’ (a—laO + a1)3 (tl —[z+ 5h])3 eaﬂ(tlf[r+5h])

s (t,~[z +6h])

5
2 +Eafl(afla0 +a)’ (tl—[r+6h])4

a,(a,a,+a) gRoltiTr+on))

+§aﬁl (aja,+a) (t,—[r+ 6h])2 +§afl (a,a,+a) (t,—[r+ 6h])3

6
(tl —[15T7h]) +%a21

2 (a8, +3,) (t, ~[z+7h])
+3a° (a8, +2,)" (t, — [ + 7h])2 + gafl (aLa, +a,)" (t,— [+ 7h])4

a'—1 (a—laO + al)6

eao(tl—[r-ﬂh])

+§aj‘l(a_1aO +a,)(t,—[z+ 7h])3

i (t,~Lz +8h1)’
6!

7 6 6
20 a% (a,a,+a) (t, —[r+8h])

2 7
+_
24

a, (a—la‘O + 61)7

.
+5 a% (a,a,+a,) (t,—[r+8h]) a’ (a,a,+a,) (t, —[r+ 8h])5 R

, T e K.
+§a§l (a,a,+a,)(t,—[r +8h])3 +%afl (a,a,+a,)’(t, —[r+8h])3

+§ a‘ (a,a, + 31)4 (t1 —[z+ 8h])4

For the case a_, (a_lao + al) =0, X(t,t) = ea‘)(trr) max { j+1 0} je {0,1, . }

4. CONCLUSION

This article obtained the structure of the coefficients of the control index matrices of single-delay neutral differential
equations in [1] through exact determination of some of those and the derivation of easily solvable recursive difference
equation for the remaining coefficients, proving conclusively that there is no general expression for such coefficients.
This contrasts quite sharply with the coefficients of control index matrices of single-delay and the class of double-delay
differential equations whose expressions are clearly established, as in expressions (2) and (3).
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